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An algorithm developed in [1] for solving plasticity problems by calculating stresses for different time intervals is used 

to exactly determine the moments at which the yield point is attained and plastic flow begins. A problem concerning the tension 

of a plate with semi-circular notches is solved to illustrate the use of the algorithm. 

The equations of the theory of plastic flow with linear strain-hardening have the form [1, 2] 
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Here, E and u are the elastic modulus and Poisson's ratio; E 1 is the shear modulus on the plastic section of the strain 

dependence of stress in the uniaxial stress state; E l, 01, and 0 are material constants (0 _< 0 _ 01; in particular, 0 = 0, 01 

> 0 for purely isotropic strain-hardening, 0 = 01 > 0 for purely translational strain-hardening, and 0 = 01 = 0 for ideal 

plasticity); S is a function of the loading surface; S. is the yield point; eij, ~Tij, and aij are components of the tensor of the total 

and plastic strains and stresses, respectively; sij are the coordinates of the center of the loading surface; 6ij is the Kronecker 

symbol; i, j = 1, 2, 3; fulfilling the summation by reiterative indices i, j, n = 1, 2, 3; the primes denote a change to 

components of the tensor of the deviator; a superimposed dot denotes differentiationwith respectto the loading parameter (time) ~'. 
We will describe the calculation of the stresses for the interval from ~- to r + Ar at each node of a formula for 

integration over the volume of an element (or at each point of integration). Using the algorithm in [1], we have the strains eij r, 

eijr+A ~ at the beginning and end of the time step (here and below, values of the function will be denoted by the subscript 

corresponding to the moment to which they pertain). We assume that the strain rates are constant over the entire interval and 

are equal to eij* = (eijT+zx r - eij0/Ar (i, j = 1, 2, 3). 

In the case of purely elastic deformation, the stresses have the values 
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We find the points of intersection of ray (2) with the loading surface either as the root t of the equation St 2 = S. 2 or as 
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where 

a0 = 6G~e~'e~'; a~ = 3GW~;  as = S~ - S~.~. 

Purely elastic deformation is assumed to occur in the interval from T to the moment 7-1 - -  the largest root 7" 1 = t in (3). Here,  

7" 1 > 7-. If  there are no real roots and S r > S.  r, W r < 0, we assign 7" 1 = 7" - -  al/a 0 a n d ,  u s i n g  (2 )  f r o m  7- to  7-1, w e  reduce 

the value of the function S. In the case 7-1 > 7- + AT-, we use Eqs. (2) to the end of  the interval. 

On the remaining part of  the step from 7-1 to 7" + AT-, where plastic flow occurs, we assume 

s0,2 = &m + (x2 - xl) si~2 (i, / = 1, 2, 3), (4) 

l 

Inserting the expressions for ~ij and sij from (1) into (4) with c = 1, we solve the resulting equations relative to oijr2, sijr2 by 

iteration [1]. We then calculate 

oo,+A, = 2a~j, 2 - a~ m, sij~+~, = 2sij~ 2 - &m (i, j = 1, 2, 3). (5) 

It follows f rom (4) and (5) that 
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Here, we take the values of  the functions 
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We change over to the sequence of inequalities 

o e,Te ' , w" ;, O, ;, O, 

W~ a 0, (S2)~2 ~ 0, &+A~ ~ S~ ;~ S . ,  

while Sr+zx z = S r l  in the cases of  ideal plasticity or purely translational strain-hardening. We have thus proven that the 

conditions for plastic flow at the end of the interval Sz+,x ~ = S,r+~x r _> S,z, Wz+,a  r _> 0 are not violated. The step is divided 

into two subintervals: before r 1, we have purely elastic deformation; from r I to the end of the step, we have elastoplastic 

deformation. 
The increments of  stress and plastic strain are determined more accurately than on the step as a whole [1]. Errors in 

the satisfaction of the condition S < S,  are eliminated, making it possible to perform a calculation with larger time steps. The 

moments at which plastic flow begins with a step are determined in accordance with the algorithm proposed in [3]. 

Let us examine the solution of a problem concerning the equilibrium of a plate with semi-circular notches. The plate 

is subjected to tension by a load P which is distributed uniformly on its edges and increases monotonically (Fig. 1). We will 

use Eqs. (1) for a material which is elastic and ideally plastic. We will also make use of  linear expressions for the strains 
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(written in displacements) and equilibrium equations [2]. The problem will be solved in the Cartesian coordinates x 1 , x 2. The 

case of  a plane strain state will be considered. 

Due to the symmetry of the problem, we will obtain the solution for one-fourth of  the plate (Fig. 1) (x 1 and x 2 are the 

axes of  symmetry,  R is the radius of  the notch, L = 6R, H = 2.5R, and H 0 = 1.5R). The edge x 2 = H, and the contour of  

the notch is not loaded. On the edge x 1 = L, we assign a 11 = P, f f12  = 0. The given one-fourth of the plate is broken up into 

105 tetragonal isoparametric Lagrangian finite elements with nine nodes (Fig. 1), We have 884 sought variables - the 

components of  the displacements - at the nodes. We will use the three-point Gaussian formula [3] to calculate the integrals 

over the area of  each element. 

We introduce dimensionless quantities (denoted by a superimposed - ) :  

1 

1 e"' , a o = T o %  ( l , y = l ,  2), 

! 1 P 

s=Tos' S'=ToS" ~=To 

(u I and u 2 are the displacements in the direction of the x 1 and x 2 axes; P0 is the load at which the yield point is reached in 

the elastic plate). The Poisson's ratio v = 0.3. In the given dimensionless variables, the solution is independent of  E, R, and 

Po. 
At ~- = 1, maximum stress intensity at the points of  integration S = S, = 3.0407 is assumed to be equal to the yield 

point. Interpolating the stresses from the points of  integration to the nodes of the elements, we determine the stress-intensity 

factor on the edge of the notches - 811 = 3.1123 at the point (0, HO) (for an infinitely long plate (L --> oo), the stress- 

concentration factor is equal to 3.109 [4, 5]). Equations (1) are satisfied only at the points of  integration, so that stress intensity 

at the other points can - as the given value of 811 - be only slightly greater than the yield point. 

The calculation for plastic strains is performed in the load interval 1 _< r _< T = 2.045 on a sequence of 22 steps: 

four steps with Ar  = 0.075; 11 steps with Ar  = 0.05; 6 steps with Ar  = 0.03; 1 step with Ar  = 0.015. The given value of 

T is less than the load T H = 2.0567 obtained in [6, 2] for a plastic-rigid plate. It should be noted that the necessary number 

of iterations of  displacement rate per step increases (to 15 for the last step) with an increase in r,  as does the computing time 
for each interval. 

At r > 1, the displacements in the region outside certain neighborhoods of the notches continue to increase almost 

linearly in relation to r. Lines 1-4 in Fig. 2 show the effect of the value of ~- on Q1 at the points (R, 0), (L, 0) and u2 at the 

points (L, H), (0, H0), respectively. The rates % (under the notch) and t~ 1 increase sharply as r approaches T. 
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Figure 3 shows the distributions of the value bll = all/S*, ~22 = a22/S* in the section x 1 = 0, while Fig. 4 shows 

the distribution of the hoop stress a 1 on the edge of a notch over the length of an arc l reckoned from the point (0, H0), with 

~r l = a I / S . ,  1 = 2l/(zrR). The dashed lines in Fig. 3 pertain to z = 1, the solid lines to ~r = T, and the clot-dash lines to the 

values at which these lines diverge from the solid lines - the values of ~11,622 in the solution [6, 2]. 

The hatched regions in Fig. 5 show the regions of plastic flow in the central part of the plate under the notch for r = 

2 and T (a and b). The boundaries of these regions have been drawn approximately as smooth curves enveloping discrete sets 

of points of integration at which the rates of plastic strain are nontrivial. At r = T, the plastic flow regions, positioned 

symmetrically in each quadrant of  the coordinate system x 1, x 2, merge on the x 1 axis. In the given solution, as z increases the 

equilibrium of the plate is assured by expansion of the region of plastic flow and stress distribution the displacements and strains 

remain finite. Nevertheless, on the basis of safety considerations, T should be considered the maximum allowable load T = 

T.. Of course, the value of T.  can be refined by making the steps Az smaller. An additional indication of the attainment of 

T, is a sharp increase in displacement rate. 
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